点击右上角微信好友

朋友圈

请使用浏览器分享功能进行分享

正在阅读:welcome购彩大厅客户端-welcome购彩大厅技巧
首页>文化频道>要闻>正文

welcome购彩大厅客户端-welcome购彩大厅技巧

来源:welcome购彩大厅漏洞2024-10-19 17:48

  

welcome购彩大厅客户端

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?******

  相比起今年诺贝尔生理学或医学奖、物理学奖的高冷,今年诺贝尔化学奖其实是相当接地气了。

  你或身边人正在用的某些药物,很有可能就来自他们的贡献。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2022 年诺贝尔化学奖因「点击化学和生物正交化学」而共同授予美国化学家卡罗琳·贝尔托西、丹麦化学家莫滕·梅尔达、美国化学家巴里·夏普莱斯(第5位两次获得诺贝尔奖的科学家)。

  一、夏普莱斯:两次获得诺贝尔化学奖

  2001年,巴里·夏普莱斯因为「手性催化氧化反应[1] [2] [3]」获得诺贝尔化学奖,对药物合成(以及香料等领域)做出了巨大贡献。

  今年,他第二次获奖的「点击化学」,同样与药物合成有关。

  1998年,已经是手性催化领军人物的夏普莱斯,发现了传统生物药物合成的一个弊端。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  过去200年,人们主要在自然界植物、动物,以及微生物中能寻找能发挥药物作用的成分,然后尽可能地人工构建相同分子,以用作药物。

  虽然相关药物的工业化,让现代医学取得了巨大的成功。然而随着所需分子越来越复杂,人工构建的难度也在指数级地上升。

  虽然有的化学家,的确能够在实验室构造出令人惊叹的分子,但要实现工业化几乎不可能。

  有机催化是一个复杂的过程,涉及到诸多的步骤。

  任何一个步骤都可能产生或多或少的副产品。在实验过程中,必须不断耗费成本去去除这些副产品。

  不仅成本高,这还是一个极其费时的过程,甚至最后可能还得不到理想的产物。

  为了解决这些问题,夏普莱斯凭借过人智慧,提出了「点击化学(Click chemistry)」的概念[4]。

  点击化学的确定也并非一蹴而就的,经过三年的沉淀,到了2001年,获得诺奖的这一年,夏普莱斯团队才完善了「点击化学」。

  点击化学又被称为“链接化学”,实质上是通过链接各种小分子,来合成复杂的大分子。

  夏普莱斯之所以有这样的构想,其实也是来自大自然的启发。

  大自然就像一个有着神奇能力的化学家,它通过少数的单体小构件,合成丰富多样的复杂化合物。

  大自然创造分子的多样性是远远超过人类的,她总是会用一些精巧的催化剂,利用复杂的反应完成合成过程,人类的技术比起来,实在是太粗糙简单了。

  大自然的一些催化过程,人类几乎是不可能完成的。

  一些药物研发,到了最后却破产了,恰恰是卡在了大自然设下的巨大陷阱中。

   夏普莱斯不禁在想,既然大自然创造的难度,人类无法逾越,为什么不还给大自然,我们跳过这个步骤呢?

  大自然有的是不需要从头构建C-C键,以及不需要重组起始材料和中间体。

  在对大型化合物做加法时,这些C-C键的构建可能十分困难。但直接用大自然现有的,找到一个办法把它们拼接起来,同样可以构建复杂的化合物。

  其实这种方法,就像搭积木或搭乐高一样,先组装好固定的模块(甚至点击化学可能不需要自己组装模块,直接用大自然现成的),然后再想一个方法把模块拼接起来。

  诺贝尔平台给三位化学家的配图,可谓是形象生动[5] [6]:

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  夏普莱斯从碳-杂原子键上获得启发,构想出了碳-杂原子键(C-X-C)为基础的合成方法。

  他的最终目标,是开发一套能不断扩展的模块,这些模块具有高选择性,在小型和大型应用中都能稳定可靠地工作。

  「点击化学」的工作,建立在严格的实验标准上:

  反应必须是模块化,应用范围广泛

  具有非常高的产量

  仅生成无害的副产品

  反应有很强的立体选择性

  反应条件简单(理想情况下,应该对氧气和水不敏感)

  原料和试剂易于获得

  不使用溶剂或在良性溶剂中进行(最好是水),且容易移除

  可简单分离,或者使用结晶或蒸馏等非色谱方法,且产物在生理条件下稳定

  反应需高热力学驱动力(>84kJ/mol)

  符合原子经济

  夏尔普莱斯总结归纳了大量碳-杂原子,并在2002年的一篇论文[7]中指出,叠氮化物和炔烃之间的铜催化反应是能在水中进行的可靠反应,化学家可以利用这个反应,轻松地连接不同的分子。

  他认为这个反应的潜力是巨大的,可在医药领域发挥巨大作用。

  二、梅尔达尔:筛选可用药物

  夏尔普莱斯的直觉是多么地敏锐,在他发表这篇论文的这一年,另外一位化学家在这方面有了关键性的发现。

  他就是莫滕·梅尔达尔。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  梅尔达尔在叠氮化物和炔烃反应的研究发现之前,其实与“点击化学”并没有直接的联系。他反而是一个在“传统”药物研发上,走得很深的一位科学家。

  为了寻找潜在药物及相关方法,他构建了巨大的分子库,囊括了数十万种不同的化合物。

  他日积月累地不断筛选,意图筛选出可用的药物。

  在一次利用铜离子催化炔与酰基卤化物反应时,发生了意外,炔与酰基卤化物分子的错误端(叠氮)发生了反应,成了一个环状结构——三唑。

  三唑是各类药品、染料,以及农业化学品关键成分的化学构件。过去的研发,生产三唑的过程中,总是会产生大量的副产品。而这个意外过程,在铜离子的控制下,竟然没有副产品产生。

  2002年,梅尔达尔发表了相关论文。

  夏尔普莱斯和梅尔达尔也正式在“点击化学”领域交汇,并促使铜催化的叠氮-炔基Husigen环加成反应(Copper-Catalyzed Azide–Alkyne Cycloaddition),成为了医药生物领域应用最为广泛的点击化学反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  三、贝尔托齐西:把点击化学运用在人体内

  不过,把点击化学进一步升华的却是美国科学家——卡罗琳·贝尔托西。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  虽然诺奖三人平分,但不难发现,卡罗琳·贝尔托西排在首位,在“点击化学”构图中,她也在C位。

  诺贝尔化学奖颁奖时,也提到,她把点击化学带到了一个新的维度。

  她解决了一个十分关键的问题,把“点击化学”运用到人体之内,这个运用也完全超出创始人夏尔普莱斯意料之外的。

  这便是所谓的生物正交反应,即活细胞化学修饰,在生物体内不干扰自身生化反应而进行的化学反应。

  卡罗琳·贝尔托西打开生物正交反应这扇大门,其实最开始也和“点击化学”无关。

  20世纪90年代,随着分子生物学的爆发式发展,基因和蛋白质地图的绘制正在全球范围内如火如荼地进行。

  然而位于蛋白质和细胞表面,发挥着重要作用的聚糖,在当时却没有工具用来分析。

  当时,卡罗琳·贝尔托西意图绘制一种能将免疫细胞吸引到淋巴结的聚糖图谱,但仅仅为了掌握多聚糖的功能就用了整整四年的时间。

  后来,受到一位德国科学家的启发,她打算在聚糖上面添加可识别的化学手柄来识别它们的结构。

  由于要在人体中反应且不影响人体,所以这种手柄必须对所有的东西都不敏感,不与细胞内的任何其他物质发生反应。

  经过翻阅大量文献,卡罗琳·贝尔托西最终找到了最佳的化学手柄。

  巧合是,这个最佳化学手柄,正是一种叠氮化物,点击化学的灵魂。通过叠氮化物把荧光物质与细胞聚糖结合起来,便可以很好地分析聚糖的结构。

  虽然贝尔托西的研究成果已经是划时代的,但她依旧不满意,因为叠氮化物的反应速度很不够理想。

  就在这时,她注意到了巴里·夏普莱斯和莫滕·梅尔达尔的点击化学反应。

  她发现铜离子可以加快荧光物质的结合速度,但铜离子对生物体却有很大毒性,她必须想到一个没有铜离子参与,还能加快反应速度的方式。

  大量翻阅文献后,贝尔托西惊讶地发现,早在1961年,就有研究发现当炔被强迫形成一个环状化学结构后,与叠氮化物便会以爆炸式地进行反应。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  2004年,她正式确立无铜点击化学反应(又被称为应变促进叠氮-炔化物环加成),由此成为点击化学的重大里程碑事件。

诺奖问答| 2022 年诺贝尔化学奖授予点击化学和生物正交化学,有哪些信息值得关注?

  贝尔托西不仅绘制了相应的细胞聚糖图谱,更是运用到了肿瘤领域。

  在肿瘤的表面会形成聚糖,从而可以保护肿瘤不受免疫系统的伤害。贝尔托西团队利用生物正交反应,发明了一种专门针对肿瘤聚糖的药物。这种药物进入人体后,会靶向破坏肿瘤聚糖,从而激活人体免疫保护。

  目前该药物正在晚期癌症病人身上进行临床试验。

  不难发现,虽然「点击化学」和「生物正交化学」的翻译,看起来很晦涩难懂,但其实背后是很朴素的原理。一个是如同卡扣般的拼接,一个是可以直接在人体内的运用。

「  点击化学」和「生物正交化学」都还是一个很年轻的领域,或许对人类未来还有更加深远的影响。(宋云江)

  参考

  https://www.nobelprize.org/prizes/chemistry/2001/press-release/

  Pfenninger, A. Asymmetric Epoxidation of Allylic Alcohols: The Sharpless Epoxidation[J]. Synthesis, 1986, 1986(02):89-116.

  Rao A S . Addition Reactions with Formation of Carbon–Oxygen Bonds: (i) General Methods of Epoxidation - ScienceDirect[J]. Comprehensive Organic Synthesis, 1991, 7:357-387.

  Kolb HC, Finn MG, Sharpless KB. Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angew Chem Int Ed Engl. 2001 Jun 1;40(11):2004-2021.

  https://www.nobelprize.org/uploads/2022/10/popular-chemistryprize2022.pdf

  https://www.nobelprize.org/uploads/2022/10/advanced-chemistryprize2022.pdf

  Demko ZP, Sharpless KB. A click chemistry approach to tetrazoles by Huisgen 1,3-dipolar cycloaddition: synthesis of 5-acyltetrazoles from azides and acyl cyanides. Angew Chem Int Ed Engl. 2002 Jun 17;41(12):2113-6. PMID: 19746613.

ICT行业发展将面呈现哪些新动向?这场趋势年会详细展望******

  光明网讯(记者 李政葳)在1月6日举行的2023 ICT行业趋势年会上,中国工程院院士邬贺铨分享了2023年ICT行业发展的十大期待,5G+工业互联网构建数实融合平台,云网融合+算网协同打造互联网新基建,WEB3.0支持数字资产与实物资产关联,元宇宙要尽快从炒作转到务实等系列观点。

  本次大会以“新趋势、新发展、新格局”为主题,由中国工信出版传媒集团主办,北京信通传媒·通信世界全媒体承办,盘点2022年技术和产业走势对2023年ICT行业发展的影响。会上,中国工信出版传媒集团副总经理刘华鲁表示,希望全行业紧紧把握数字化发展的新趋势,推进构建新发展格局,加快推进数字化创新成果的转化,不断催生新产业、新业态、新模式。

  工业互联网是产业数字化转型和实体经济高质量发展的新型基础设施。中国工业互联网研究院总工程师王宝友表示,工业互联网助力重塑工业生产制造和服务体系,已成为工业经济转型升级的关键依托。工业互联网带动各行业的增加值规模持续增长,影响范围从制造业延伸到电力、交通、能源、建筑、金融等45个国民经济大类,在支撑工业经济数字化转型的同时,有效助力农业现代化和服务业高端化,促进一二三产业融通发展。

  2023年我国数字经济加速转向深化应用、规范发展、普惠共享的新阶段。“工业数字化加速渗透,与服务业数字化共同构成驱动数字经济发展的双引擎。”中国信息通信研究院副总工程师何伟说。

  我国数字经济新十年的发展大幕开启,将进入新一轮快速发展阶段。数据显示,预计到2023年,我国数字经济规模将超过52万亿元。其中,ICT产业平稳发展,收入增速9.4%,较2022年显著提升,预计2022—2025年ICT产业收入年均增长10%。

  数字经济的快速发展离不开产业企业的使能推动。比如,新华三积极构建以异构算力、高质量网络、数智一体化、算网融合、绿色低碳、安全可信六位一体的新型数字基础设施,全力助推国家数字经济高质量发展;诺基亚贝尔认为,行业数字化转型的最重要的目标就是实现可持续发展,利用数字化技术和手段降本增效,节能减排;长飞宽带多模光纤支持400G及以上数据中心光接入,助力全光算力网络,打造高效稳定的数据中心。

  2022年是数字经济全面发力的一年,5G、云计算、AI等新技术融入千行百业,芯片、模组、终端等产业逐步壮大,为我国数字经济发展打下坚实基础。通信世界全媒体特评选出2022年在5G技术与应用创新领域有杰出贡献的“5G创新人物”以及引领ICT产业创新的“2022年度ICT产业创新人物”两大重磅奖项。

  据了解,本次年会分为开幕式主论坛与三场分论坛——5G创新发展高峰论坛、智能算网高峰论坛、千兆智家高峰论坛。与会各方共同探索ICT产业在危机中育新机、于变局中开新局的新思路。

  (文图:赵筱尘 巫邓炎)

[责编:天天中]
阅读剩余全文(

相关阅读

视觉焦点

  • 旗帜鲜明地支持马斯克:激光雷达三年内将被取代!

  • 这些中国“00后”正在冬奥会上闪闪发光

独家策划

推荐阅读
welcome购彩大厅APP超大火锅底料"蛋糕塔" 1.5米高总重上千斤
2024-06-12
welcome购彩大厅注册豪出新境界 宝马xDrive 40i M运动套装
2024-09-17
welcome购彩大厅计划第7期|段建军:汽车的发明者 将从客户出发
2024-04-10
welcome购彩大厅下载 20世纪精彩的历史瞬间
2024-07-09
welcome购彩大厅网址xmind8零基础/进阶/案例全程通关
2024-06-25
welcome购彩大厅计划群A股人均薪酬排行曝光:乐视网100万仅排第五
2024-05-31
welcome购彩大厅娱乐北京发生山洪灾害 铲车翻倒4人被困
2024-07-08
welcome购彩大厅规则易宪容:三线城市房价如何走
2024-09-27
welcome购彩大厅邀请码央视女主持王小骞41岁意外当妈,如今4岁女儿长这样
2024-08-14
welcome购彩大厅官方高校男生打造古风宿舍
2024-06-14
welcome购彩大厅走势图张丹峰辟谣后洪欣首次现身
2024-08-05
welcome购彩大厅官网为防范疫情传播 希腊帕特雷市取消狂欢节大游行
2024-04-15
welcome购彩大厅软件家风败坏的女台长被查前 江西广电已多人连续落马
2024-08-10
welcome购彩大厅官方网站颤抖吧!考试作弊,高铁霸座将纳入失信
2024-07-13
welcome购彩大厅开奖结果 英超-福布斯韩国名人榜:孙兴慜位列第9 收入排第4
2024-04-26
welcome购彩大厅手机版APP可贷50万 申请平安贷款1天放款
2023-12-24
welcome购彩大厅平台“火箭实力”铸就冬奥传奇
2024-03-10
welcome购彩大厅赔率广西侗乡早春万亩油茶种植忙
2024-01-09
welcome购彩大厅交流群他为中国导弹雕刻翅膀 零件厚度仅头发丝的1/16(图)
2023-12-28
welcome购彩大厅玩法迪奥纪梵希等护肤品降价 唇膏仅降5块
2024-01-15
welcome购彩大厅开户亚马逊的人工智能监工说,你不是世界首富贝佐斯的兄弟
2024-09-21
welcome购彩大厅网投3分钟速览4月上市新车——新能源篇
2024-06-26
welcome购彩大厅登录努比亚红魔3装进风扇体验咋样
2024-05-17
welcome购彩大厅官网平台贾静雯与仨女儿合照有爱
2024-02-23
加载更多
welcome购彩大厅地图